1,054 research outputs found

    Automated Identification of Unhealthy Drinking Using Routinely Collected Data: A Machine Learning Approach

    Get PDF
    Background: Unhealthy drinking is prevalent in the United States and can lead to serious health and social consequences, yet it is under-diagnosed and under-treated. Identifying unhealthy drinkers can be time-consuming for primary care providers. An automated tool for identification would allow attention to be focused on patients most likely to need care and therefore increase efficiency and effectiveness. Objectives: To build a clinical prediction tool for unhealthy drinking based solely on routinely collected demographic and laboratory data. Methods: We obtained demographic and laboratory data on 89,325 adults seen at the University of Vermont Medical Center from 2011-2017. Logistic regression, support vector machines (SVM), k-nearest neighbor, and random forests were each used to build clinical prediction models. The model with the largest area under the receiver operator curve (AUC) was selected. Results: SVM with polynomials of degree 3 produced the largest AUC. The most influential predictors were alkaline phosphatase, gender, glucose, and serum bicarbonate. The optimum operating point had sensitivity 31.1%, specificity 91.2%, positive predictive value 50.4%, and negative predictive value 82.1%. Application of the tool increased the prevalence of unhealthy drinking from 18.3% to 32.4%, while reducing the target population by 22%. Limitations: Universal screening was not used during the time data was collected. The prevalence of unhealthy drinking among those screened was 60% suggesting the AUDIT-C was administered to confirm rather than screen for unhealthy drinking. Conclusion: An automated tool, using commonly available data, can identify a subset of patients who appear to warrant clinical attention for unhealthy drinking

    Prospects for observing ultra-compact binaries with space-based gravitational wave interferometers and optical telescopes

    Get PDF
    Space-based gravitational wave interferometers are sensitive to the galactic population of ultra-compact binaries. An important subset of the ultra-compact binary population are those stars that can be individually resolved by both gravitational wave interferometers and electromagnetic telescopes. The aim of this paper is to quantify the multi-messenger potential of space-based interferometers with arm-lengths between 1 and 5 Gm. The Fisher Information Matrix is used to estimate the number of binaries from a model of the Milky Way which are localized on the sky by the gravitational wave detector to within 1 and 10 square degrees and bright enough to be detected by a magnitude limited survey. We find, depending on the choice of GW detector characteristics, limiting magnitude, and observing strategy, that up to several hundred gravitational wave sources could be detected in electromagnetic follow-up observations.Comment: 6 pages, 3 figures Updated to include new results. Submitted to MNRA

    Long sandwich modules for photon veto detectors

    Full text link
    Long lead-scintillator sandwich modules developed for the BNL experiment KOPIO are described. The individual 4 m long module consists of 15 layers of 7 mm thick extruded scintillator and 15 layers of 1 mm lead absorber. Readout is implemented via WLS fibers glued into grooves in a scintillator with 7 mm spacing and viewed from both ends by the phototubes. Time resolution of 300 ps for cosmic MIPs was obtained. Light output stability monitored for 2 years shows no degradation beyond the measurement errors. A 4 m long C-bent sandwich module was also manufactured and tested.Comment: 14 pages, 13 figures, 1 tabl

    Basic Parameter Estimation of Binary Neutron Star Systems by the Advanced LIGO/Virgo Network

    Get PDF
    Within the next five years, it is expected that the Advanced LIGO/Virgo network will have reached a sensitivity sufficient to enable the routine detection of gravitational waves. Beyond the initial detection, the scientific promise of these instruments relies on the effectiveness of our physical parameter estimation capabilities. The majority of this effort has been towards the detection and characterization of gravitational waves from compact binary coalescence, e.g. the coalescence of binary neutron stars. While several previous studies have investigated the accuracy of parameter estimation with advanced detectors, the majority have relied on approximation techniques such as the Fisher Matrix. Here we report the statistical uncertainties that will be achievable for optimal detection candidates (SNR = 20) using the full parameter estimation machinery developed by the LIGO/Virgo Collaboration via Markov-Chain Monte Carlo methods. We find the recovery of the individual masses to be fractionally within 9% (15%) at the 68% (95%) credible intervals for equal-mass systems, and within 1.9% (3.7%) for unequal-mass systems. We also find that the Advanced LIGO/Virgo network will constrain the locations of binary neutron star mergers to a median uncertainty of 5.1 deg^2 (13.5 deg^2) on the sky. This region is improved to 2.3 deg^2 (6 deg^2) with the addition of the proposed LIGO India detector to the network. We also report the average uncertainties on the luminosity distances and orbital inclinations of ideal detection candidates that can be achieved by different network configurations.Comment: Second version: 15 pages, 9 figures, accepted in Ap

    Rare Kaon Decays

    Get PDF
    The current status of rare kaon decay experiments is reviewed. New limits in the search for Lepton Flavor Violation are discussed, as are new measurements of the CKM matrix.Comment: 8 pages, 3 figures, LaTeX, presented at the 3rd International Conference on B Phyiscs and CP Violation, Taipei December 3-7, 199

    Flavor-Changing Processes in Extended Technicolor

    Full text link
    We analyze constraints on a class of extended technicolor (ETC) models from neutral flavor-changing processes induced by (dimension-six) four-fermion operators. The ETC gauge group is taken to commute with the standard-model gauge group. The models in the class are distinguished by how the left- and right-handed (L,R)(L,R) components of the quarks and charged leptons transform under the ETC group. We consider K0Kˉ0K^{0} - \bar K^0 and other pseudoscalar meson mixings, and conclude that they are adequately suppressed if the LL and RR components of the relevant quarks are assigned to the same (fundamental or conjugate-fundamental) representation of the ETC group. Models in which the LL and RR components of the down-type quarks are assigned to relatively conjugate representations, while they can lead to realistic CKM mixing and intra-family mass splittings, do not adequately suppress these mixing processes. We identify an approximate global symmetry that elucidates these behavioral differences and can be used to analyze other possible representation assignments. Flavor-changing decays, involving quarks and/or leptons, are adequately suppressed for any ETC-representation assignment of the LL and RR components of the quarks, as well as the leptons. We draw lessons for future ETC model building.Comment: 25 page
    corecore